Human Action Recognition and Localization using Spatio-temporal Descriptors and Tracking

نویسندگان

  • Lamberto Ballan
  • Marco Bertini
  • Alberto Del Bimbo
  • Lorenzo Seidenari
  • Giuseppe Serra
  • A. Del Bimbo
  • L. Seidenari
  • G. Serra
چکیده

In this paper we propose a system for human action tracking and recognition using a robust particle filter-based visual tracker and a novel descriptor, to represent spatio-temporal interest points, based on an effective combination of a new 3D gradient descriptor with an optic flow descriptor. These points are used to represent video sequences using a bag of spatio-temporal visual words, following the successful results achieved in object and scene classification. The tracker assigns the points to each individual in a scene, allowing the classification of the action performed by each person. The system has been extensively tested on the standard KTH and Weizmann actions datasets, as well as on real world surveillance videos.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatio-Temporal Action Localization For Human Action Recognition in Large Dataset

Human action recognition has drawn much attention in the field of video analysis. In this paper, we develop a human action detection and recognition process based on the tracking of Interest Points (IP) trajectory. A pre-processing step that performs spatio-temporal action detection is proposed. This step uses optical flow along with dense speed-up-robust-features (SURF) in order to detect and ...

متن کامل

Recognition of Visual Events using Spatio-Temporal Information of the Video Signal

Recognition of visual events as a video analysis task has become popular in machine learning community. While the traditional approaches for detection of video events have been used for a long time, the recently evolved deep learning based methods have revolutionized this area. They have enabled event recognition systems to achieve detection rates which were not reachable by traditional approac...

متن کامل

Combining Spatio-Temporal Appearance Descriptors and Optical Flow for Human Action Recognition in Video Data

This paper proposes combining spatio-temporal appearance (STA) descriptors with optical flow for human action recognition. The STA descriptors are local histogram-based descriptors of space-time, suitable for building a partial representation of arbitrary spatio-temporal phenomena. Because of the possibility of iterative refinement, they are interesting in the context of online human action rec...

متن کامل

Genetic Programming-Evolved Spatio-Temporal Descriptor for Human Action Recognition

The potential value of human action recognition has led to it becoming one of the most active research subjects in computer vision. In this paper, we propose a novel method to automatically generate low-level spatio-temporal descriptors showing good performance, for high-level human-action recognition tasks. We address this as an optimization problem using genetic programming (GP), an evolution...

متن کامل

3D Gait Recognition Using Spatio-Temporal Motion Descriptors

We present a view independent algorithm for 3D human gait recognition. The identification of the person is achieved using motion data obtained by our markerless 3D motion tracking algorithm. We report its tracking accuracy using ground-truth data obtained by a markerbased motion capture system. The classification is done using SVM built on the proposed spatio-temporal motion descriptors. The id...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009